From e6a7c7cc18c3aaad1ae0872cb0a959f5c923d2bd Mon Sep 17 00:00:00 2001 From: Mihai Maruseac Date: Tue, 20 Apr 2021 14:45:33 -0700 Subject: [PATCH] Remove `OP_REQUIRES` call from helper function. Since `OP_REQUIRES` macro expands to a `return;` (among other), calling it in a helper function only ends the helper function's execution earlier, but the kernel will still run from start to end. Thus, all the expected validations are actually broken/useless as the code ploughs through the next crash anyway. PiperOrigin-RevId: 369524386 Change-Id: I54f6cf9328445675ccc392e661b04336b229c9da --- .../core/kernels/sparse/sparse_cholesky_op.cc | 67 ++++++++++--------- 1 file changed, 34 insertions(+), 33 deletions(-) diff --git a/tensorflow/core/kernels/sparse/sparse_cholesky_op.cc b/tensorflow/core/kernels/sparse/sparse_cholesky_op.cc index 9a939276f0b6c..47ab252317de5 100644 --- a/tensorflow/core/kernels/sparse/sparse_cholesky_op.cc +++ b/tensorflow/core/kernels/sparse/sparse_cholesky_op.cc @@ -17,6 +17,8 @@ limitations under the License. #include #include +#include "tensorflow/core/framework/op_requires.h" + #define EIGEN_USE_THREADS #include "third_party/eigen3/Eigen/Core" @@ -82,8 +84,8 @@ class CSRSparseCholeskyCPUOp : public OpKernel { int64 num_rows; int batch_size; - ValidateInputs(ctx, *input_matrix, input_permutation_indices, &batch_size, - &num_rows); + OP_REQUIRES_OK(ctx, ValidateInputs(*input_matrix, input_permutation_indices, + &batch_size, &num_rows)); // Allocate batch pointers. Tensor batch_ptr(cpu_allocator(), DT_INT32, TensorShape({batch_size + 1})); @@ -226,49 +228,48 @@ class CSRSparseCholeskyCPUOp : public OpKernel { } private: - void ValidateInputs(OpKernelContext* ctx, - const CSRSparseMatrix& sparse_matrix, - const Tensor& permutation_indices, int* batch_size, - int64* num_rows) { - OP_REQUIRES(ctx, sparse_matrix.dtype() == DataTypeToEnum::value, - errors::InvalidArgument( - "Asked for a CSRSparseMatrix of type ", - DataTypeString(DataTypeToEnum::value), - " but saw dtype: ", DataTypeString(sparse_matrix.dtype()))); + Status ValidateInputs(const CSRSparseMatrix& sparse_matrix, + const Tensor& permutation_indices, int* batch_size, + int64* num_rows) { + if (sparse_matrix.dtype() != DataTypeToEnum::value) + return errors::InvalidArgument( + "Asked for a CSRSparseMatrix of type ", + DataTypeString(DataTypeToEnum::value), + " but saw dtype: ", DataTypeString(sparse_matrix.dtype())); const Tensor& dense_shape = sparse_matrix.dense_shape(); const int rank = dense_shape.dim_size(0); - OP_REQUIRES(ctx, rank == 2 || rank == 3, - errors::InvalidArgument("sparse matrix must have rank 2 or 3; ", - "but dense_shape has size ", rank)); + if (rank < 2 || rank > 3) + return errors::InvalidArgument("sparse matrix must have rank 2 or 3; ", + "but dense_shape has size ", rank); const int row_dim = (rank == 2) ? 0 : 1; auto dense_shape_vec = dense_shape.vec(); *num_rows = dense_shape_vec(row_dim); const int64 num_cols = dense_shape_vec(row_dim + 1); - OP_REQUIRES(ctx, *num_rows == num_cols, - errors::InvalidArgument("sparse matrix must be square; got: ", - *num_rows, " != ", num_cols)); + if (*num_rows != num_cols) + return errors::InvalidArgument( + "sparse matrix must be square; got: ", *num_rows, " != ", num_cols); const TensorShape& perm_shape = permutation_indices.shape(); - OP_REQUIRES( - ctx, perm_shape.dims() + 1 == rank, - errors::InvalidArgument( - "sparse matrix must have the same rank as permutation; got: ", rank, - " != ", perm_shape.dims(), " + 1.")); - OP_REQUIRES( - ctx, perm_shape.dim_size(rank - 2) == *num_rows, - errors::InvalidArgument( - "permutation must have the same number of elements in each batch " - "as the number of rows in sparse matrix; got: ", - perm_shape.dim_size(rank - 2), " != ", *num_rows)); + if (perm_shape.dims() + 1 != rank) + return errors::InvalidArgument( + "sparse matrix must have the same rank as permutation; got: ", rank, + " != ", perm_shape.dims(), " + 1."); + if (perm_shape.dim_size(rank - 2) != *num_rows) + return errors::InvalidArgument( + "permutation must have the same number of elements in each batch " + "as the number of rows in sparse matrix; got: ", + perm_shape.dim_size(rank - 2), " != ", *num_rows); *batch_size = sparse_matrix.batch_size(); if (*batch_size > 1) { - OP_REQUIRES( - ctx, perm_shape.dim_size(0) == *batch_size, - errors::InvalidArgument("permutation must have the same batch size " - "as sparse matrix; got: ", - perm_shape.dim_size(0), " != ", *batch_size)); + if (perm_shape.dim_size(0) != *batch_size) + return errors::InvalidArgument( + "permutation must have the same batch size " + "as sparse matrix; got: ", + perm_shape.dim_size(0), " != ", *batch_size); } + + return Status::OK(); } };