!37 Fix CVE-2021-41210 CVE-2021-41219 CVE-2021-41223

From: @houyingchao
Reviewed-by: @zhengzhenyu
Signed-off-by: @zhengzhenyu
This commit is contained in:
openeuler-ci-bot 2021-11-11 10:21:33 +00:00 committed by Gitee
commit 408f8b81ec
4 changed files with 325 additions and 1 deletions

57
CVE-2021-41210.patch Normal file
View File

@ -0,0 +1,57 @@
From 701cfaca222a82afbeeb17496bd718baa65a67d2 Mon Sep 17 00:00:00 2001
From: Robert Neale <rneale@google.com>
Date: Tue, 26 Oct 2021 16:50:02 -0700
Subject: [PATCH] Fix heap out of bounds error in
tf.raw_ops.SparseCountSparseOutput shape inference when it is called with
invalid inputs, and add a test for it.
PiperOrigin-RevId: 405766415
Change-Id: I77d244ef35f351ef7b6f821efd959cac2c66db24
---
tensorflow/core/ops/count_ops.cc | 2 ++
tensorflow/python/ops/bincount_ops_test.py | 19 +++++++++++++++++++
2 files changed, 21 insertions(+)
diff --git a/tensorflow/core/ops/count_ops.cc b/tensorflow/core/ops/count_ops.cc
index 4f9631310df92..aa6c0437337af 100644
--- a/tensorflow/core/ops/count_ops.cc
+++ b/tensorflow/core/ops/count_ops.cc
@@ -41,6 +41,8 @@ Status DenseCountSparseOutputShapeFn(InferenceContext *c) {
}
Status SparseCountSparseOutputShapeFn(InferenceContext *c) {
+ ShapeHandle unused;
+ TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 2, &unused));
auto rank = c->Dim(c->input(0), 1);
auto nvals = c->UnknownDim();
c->set_output(0, c->Matrix(nvals, rank)); // out.indices
diff --git a/tensorflow/python/ops/bincount_ops_test.py b/tensorflow/python/ops/bincount_ops_test.py
index 3c7a2a5da9daf..de7d1423870d7 100644
--- a/tensorflow/python/ops/bincount_ops_test.py
+++ b/tensorflow/python/ops/bincount_ops_test.py
@@ -831,6 +831,25 @@ def test_ragged_input_different_shape_fails(self):
self.evaluate(bincount_ops.sparse_bincount(x, weights=weights, axis=-1))
+class RawOpsHeapOobTest(test.TestCase, parameterized.TestCase):
+
+ @test_util.run_v1_only("Test security error")
+ def testSparseCountSparseOutputBadIndicesShapeTooSmall(self):
+ indices = [1]
+ values = [[1]]
+ weights = []
+ dense_shape = [10]
+ with self.assertRaisesRegex(ValueError,
+ "Shape must be rank 2 but is rank 1 for"):
+ self.evaluate(
+ gen_count_ops.SparseCountSparseOutput(
+ indices=indices,
+ values=values,
+ dense_shape=dense_shape,
+ weights=weights,
+ binary_output=True))
+
+
@test_util.run_all_in_graph_and_eager_modes
@test_util.disable_tfrt
class RawOpsTest(test.TestCase, parameterized.TestCase):

43
CVE-2021-41219.patch Normal file
View File

@ -0,0 +1,43 @@
From e6cf28c72ba2eb949ca950d834dd6d66bb01cfae Mon Sep 17 00:00:00 2001
From: Penporn Koanantakool <penporn@google.com>
Date: Tue, 5 Oct 2021 21:54:15 -0700
Subject: [PATCH] Validate that matrix dimension sizes in SparseMatMul are
positive.
PiperOrigin-RevId: 401149683
Change-Id: Ib33eafc561a39c8741ece80b2edce6d4aae9a57d
---
tensorflow/core/kernels/sparse_matmul_op.cc | 10 ++++++++++
1 file changed, 10 insertions(+)
diff --git a/tensorflow/core/kernels/sparse_matmul_op.cc b/tensorflow/core/kernels/sparse_matmul_op.cc
index a02afafa33e3a..6bf9dfa3d8bb7 100644
--- a/tensorflow/core/kernels/sparse_matmul_op.cc
+++ b/tensorflow/core/kernels/sparse_matmul_op.cc
@@ -32,6 +32,7 @@ limitations under the License.
#include "tensorflow/core/kernels/fill_functor.h"
#include "tensorflow/core/lib/core/blocking_counter.h"
#include "tensorflow/core/lib/core/threadpool.h"
+#include "tensorflow/core/platform/errors.h"
#include "tensorflow/core/platform/logging.h"
#include "tensorflow/core/platform/macros.h"
#include "tensorflow/core/platform/mutex.h"
@@ -980,9 +981,18 @@ class SparseMatMulOp : public OpKernel {
errors::InvalidArgument(
"Matrix size incompatible: a: ", a.shape().DebugString(),
", b: ", b.shape().DebugString()));
+ OP_REQUIRES(ctx, m >= 0 && n >= 0 && k >= 0,
+ errors::InvalidArgument(
+ "Matrix dimensions cannot be negative: a: ",
+ a.shape().DebugString(), ", b: ", b.shape().DebugString()));
Tensor* output = nullptr;
OP_REQUIRES_OK(ctx, ctx->allocate_output(0, TensorShape({m, n}), &output));
+ // Return early if at least one of the output dimension size is 0.
+ if (m == 0 || n == 0) {
+ return;
+ }
+
if (k == 0) {
// If the inner dimension k in the matrix multiplication is zero, we fill
// the output with zeros.

218
CVE-2021-41223.patch Normal file
View File

@ -0,0 +1,218 @@
From aab9998916c2ffbd8f0592059fad352622f89cda Mon Sep 17 00:00:00 2001
From: Reed Wanderman-Milne <reedwm@google.com>
Date: Wed, 29 Sep 2021 13:00:50 -0700
Subject: [PATCH] Add shape checks to FusedBatchNorm kernels.
---
.../core/kernels/fused_batch_norm_op.cc | 38 +++++-
.../python/ops/nn_fused_batchnorm_test.py | 122 ++++++++++++++++++
2 files changed, 153 insertions(+), 7 deletions(-)
diff --git a/tensorflow/core/kernels/fused_batch_norm_op.cc b/tensorflow/core/kernels/fused_batch_norm_op.cc
index bd5dab36..b19323f0 100644
--- a/tensorflow/core/kernels/fused_batch_norm_op.cc
+++ b/tensorflow/core/kernels/fused_batch_norm_op.cc
@@ -1279,18 +1279,20 @@ class FusedBatchNormOpBase : public OpKernel {
errors::InvalidArgument("offset must have the same number of elements "
"as the channels of x, got ",
offset.NumElements(), " and ", num_channels));
- if (estimated_mean.NumElements() != 0) {
+ if (!is_training_ || exponential_avg_factor_ != 1.) {
+ std::string prefix_msg = is_training_ ? "When exponential_avg_factor != 1"
+ : "When is_training=false";
OP_REQUIRES(context, estimated_mean.NumElements() == num_channels,
errors::InvalidArgument(
- "mean must be empty or have the same number of "
- "elements as the channels of x, got ",
+ prefix_msg,
+ ", mean must have the same number "
+ "of elements as the channels of x, got ",
estimated_mean.NumElements(), " and ",num_channels));
- }
- if (estimated_variance.NumElements() != 0) {
OP_REQUIRES(context, estimated_variance.NumElements() == num_channels,
errors::InvalidArgument(
- "variance must be empty or have the same number of "
- "elements as the channels of x, got ",
+ prefix_msg,
+ ", variance must have the same "
+ "number of elements as the channels of x, got ",
estimated_variance.NumElements(), " and ", num_channels));
}
@@ -1434,6 +1436,28 @@ class FusedBatchNormGradOpBase : public OpKernel {
errors::InvalidArgument(
"saved variance must be 1-dimensional",
saved_maybe_inv_var_or_pop_var.shape().DebugString()));
+ OP_REQUIRES(
+ context, x.shape() == y_backprop.shape(),
+ errors::InvalidArgument(
+ "x and y_backprop must have same shape, but x has shape ",
+ x.shape(), " and y_backprop has shape ", y_backprop.shape()));
+
+ const auto num_channels = GetTensorDim(x, tensor_format_, 'C');
+ OP_REQUIRES(
+ context, scale.NumElements() == num_channels,
+ errors::InvalidArgument("scale must have the same number of elements "
+ "as the channels of x, got ",
+ scale.NumElements(), " and ", num_channels));
+ OP_REQUIRES(
+ context, saved_mean_or_pop_mean.NumElements() == num_channels,
+ errors::InvalidArgument("reserve_space_1 must have the same number of "
+ "elements as the channels of x, got ",
+ scale.NumElements(), " and ", num_channels));
+ OP_REQUIRES(
+ context, saved_maybe_inv_var_or_pop_var.NumElements() == num_channels,
+ errors::InvalidArgument("reserve_space_2 must have the same number of "
+ "elements as the channels of x, got ",
+ scale.NumElements(), " and ", num_channels));
Tensor* x_backprop = nullptr;
OP_REQUIRES_OK(context,
diff --git a/tensorflow/python/ops/nn_fused_batchnorm_test.py b/tensorflow/python/ops/nn_fused_batchnorm_test.py
index 1742a919..8fecd1c7 100644
--- a/tensorflow/python/ops/nn_fused_batchnorm_test.py
+++ b/tensorflow/python/ops/nn_fused_batchnorm_test.py
@@ -20,10 +20,13 @@ from __future__ import print_function
import numpy as np
+from tensorflow.python.eager import context
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import dtypes
+from tensorflow.python.framework import errors_impl
from tensorflow.python.framework import test_util
from tensorflow.python.ops import array_ops
+from tensorflow.python.ops import gen_nn_ops
from tensorflow.python.ops import gradient_checker
from tensorflow.python.ops import gradients_impl
from tensorflow.python.ops import math_ops
@@ -610,6 +613,125 @@ class BatchNormalizationTest(test.TestCase):
}
self._testBatchNormGradGrad(config)
+ def testEagerShapeErrors(self):
+ with context.eager_mode():
+ x = array_ops.ones((2, 2, 2, 2))
+ scale = array_ops.ones((3,))
+ offset = array_ops.ones((2,))
+ with self.assertRaisesRegex(
+ errors_impl.InvalidArgumentError,
+ 'scale must have the same number of elements'):
+ nn_impl.fused_batch_norm(x, scale, offset)
+
+ x = array_ops.ones((2, 2, 2, 2))
+ scale = array_ops.ones((2,))
+ offset = array_ops.ones((3,))
+ with self.assertRaisesRegex(
+ errors_impl.InvalidArgumentError,
+ 'offset must have the same number of elements'):
+ nn_impl.fused_batch_norm(x, scale, offset)
+
+ x = array_ops.ones((2, 2, 2, 2))
+ scale = array_ops.ones((2,))
+ offset = array_ops.ones((2,))
+ mean = array_ops.ones((0,))
+ variance = array_ops.ones((2,))
+ with self.assertRaisesRegex(
+ errors_impl.InvalidArgumentError,
+ 'When is_training=false, mean must have the same number of elements'):
+ nn_impl.fused_batch_norm(
+ x, scale, offset, mean=mean, variance=variance, is_training=False)
+
+ x = array_ops.ones((2, 2, 2, 2))
+ scale = array_ops.ones((2,))
+ offset = array_ops.ones((2,))
+ mean = array_ops.ones((2,))
+ variance = array_ops.ones((0,))
+ with self.assertRaisesRegex(
+ errors_impl.InvalidArgumentError,
+ 'When is_training=false, variance must have the same number of '
+ nn_impl.fused_batch_norm(
+ x, scale, offset, mean=mean, variance=variance, is_training=False)
+
+ x = array_ops.ones((2, 2, 2, 2))
+ scale = array_ops.ones((2,))
+ offset = array_ops.ones((2,))
+ mean = array_ops.ones((0,))
+ variance = array_ops.ones((2,))
+ with self.assertRaisesRegex(
+ errors_impl.InvalidArgumentError,
+ 'When exponential_avg_factor != 1, mean must have the same number of '
+ 'elements'):
+ nn_impl.fused_batch_norm(
+ x,
+ scale,
+ offset,
+ mean=mean,
+ variance=variance,
+ exponential_avg_factor=0.5)
+
+ x = array_ops.ones((2, 2, 2, 2))
+ scale = array_ops.ones((2,))
+ offset = array_ops.ones((2,))
+ mean = array_ops.ones((2,))
+ variance = array_ops.ones((0,))
+ with self.assertRaisesRegex(
+ errors_impl.InvalidArgumentError,
+ 'When exponential_avg_factor != 1, variance must have the same '
+ 'number of elements'):
+ nn_impl.fused_batch_norm(
+ x,
+ scale,
+ offset,
+ mean=mean,
+ variance=variance,
+ exponential_avg_factor=0.5)
+
+ def testEagerShapeGradErrors(self):
+ with context.eager_mode():
+ y_backprop = array_ops.ones((2, 2, 2, 3))
+ x = array_ops.ones((2, 2, 2, 2))
+ scale = array_ops.ones((2,))
+ reserve_space_1 = array_ops.ones((2,))
+ reserve_space_2 = array_ops.ones((2,))
+ with self.assertRaisesRegex(errors_impl.InvalidArgumentError,
+ 'x and y_backprop must have same shape,'):
+ gen_nn_ops.fused_batch_norm_grad_v2(y_backprop, x, scale,
+ reserve_space_1, reserve_space_2)
+
+ y_backprop = array_ops.ones((2, 2, 2, 2))
+ x = array_ops.ones((2, 2, 2, 2))
+ scale = array_ops.ones((3,))
+ reserve_space_1 = array_ops.ones((2,))
+ reserve_space_2 = array_ops.ones((2,))
+ with self.assertRaisesRegex(
+ errors_impl.InvalidArgumentError,
+ 'scale must have the same number of elements'):
+ gen_nn_ops.fused_batch_norm_grad_v2(y_backprop, x, scale,
+ reserve_space_1, reserve_space_2)
+
+ y_backprop = array_ops.ones((2, 2, 2, 2))
+ x = array_ops.ones((2, 2, 2, 2))
+ scale = array_ops.ones((2,))
+ reserve_space_1 = array_ops.ones((3,))
+ reserve_space_2 = array_ops.ones((2,))
+ with self.assertRaisesRegex(
+ errors_impl.InvalidArgumentError,
+ 'reserve_space_1 must have the same number of elements'):
+ gen_nn_ops.fused_batch_norm_grad_v2(y_backprop, x, scale,
+ reserve_space_1, reserve_space_2)
+
+ y_backprop = array_ops.ones((2, 2, 2, 2))
+ x = array_ops.ones((2, 2, 2, 2))
+ scale = array_ops.ones((2,))
+ reserve_space_1 = array_ops.ones((2,))
+ reserve_space_2 = array_ops.ones((3,))
+ with self.assertRaisesRegex(
+ errors_impl.InvalidArgumentError,
+ 'reserve_space_2 must have the same number of elements'):
+ gen_nn_ops.fused_batch_norm_grad_v2(y_backprop, x, scale,
+ reserve_space_1, reserve_space_2)
+
if __name__ == '__main__':
test.main()
--
2.23.0

View File

@ -1,7 +1,7 @@
%global _empty_manifest_terminate_build 0
Name: tensorflow
Version: 2.3.1
Release: 12
Release: 13
Summary: An Open Source Machine Learning Framework for Everyone
License: Apache License 2.0
URL: https://www.tensorflow.org/
@ -188,6 +188,9 @@ Patch0176: CVE-2021-37679.patch
Patch0177: CVE-2021-37690-1.patch
Patch0178: CVE-2021-37690-2.patch
Patch0179: CVE-2021-37690-3.patch
Patch0180: CVE-2021-41210.patch
Patch0181: CVE-2021-41219.patch
Patch0182: CVE-2021-41223.patch
Requires: python3-future
Requires: python3-numpy
@ -234,6 +237,9 @@ bazel --output_user_root=`pwd`/../output_user_root build --host_copt=-Wno-string
%{_bindir}/*
%changelog
* Wed Nov 10 2021 houyingchao <houyingchao@huawei.com> - 2.3.1-13
- Fix CVE-2021-41210 CVE-2021-41219 CVE-2021-41223
* Thu Sep 16 2021 yaoxin <yaoxin30@huawei.com> - 2.3.1-12
- Fix CVE-2021-37690