tensorflow/CVE-2021-29519.patch

144 lines
6.9 KiB
Diff
Raw Normal View History

From b1cc5e5a50e7cee09f2c6eb48eb40ee9c4125025 Mon Sep 17 00:00:00 2001
From: Amit Patankar <amitpatankar@google.com>
Date: Thu, 15 Apr 2021 13:03:19 -0700
Subject: [PATCH] Fix `tf.raw_ops.SparseCross` failing CHECK.
PiperOrigin-RevId: 368701671
Change-Id: Id805729dd9ba0bda36e4bb309408129b55fb649d
---
tensorflow/core/kernels/sparse_cross_op.cc | 55 +++++++++++++++++++---
1 file changed, 48 insertions(+), 7 deletions(-)
diff --git a/tensorflow/core/kernels/sparse_cross_op.cc b/tensorflow/core/kernels/sparse_cross_op.cc
index 583235b4a309b..43b3bedc74503 100644
--- a/tensorflow/core/kernels/sparse_cross_op.cc
+++ b/tensorflow/core/kernels/sparse_cross_op.cc
@@ -27,6 +27,7 @@ limitations under the License.
#include "tensorflow/core/framework/tensor.h"
#include "tensorflow/core/framework/tensor_shape.h"
#include "tensorflow/core/framework/types.h"
+#include "tensorflow/core/framework/types.pb.h"
#include "tensorflow/core/lib/core/stringpiece.h"
#include "tensorflow/core/lib/strings/str_util.h"
#include "tensorflow/core/platform/fingerprint.h"
@@ -460,10 +461,19 @@ int64 CalculateBatchSize(const OpInputList& shapes_list_in,
Status ValidateInput(const OpInputList& indices_list_in,
const OpInputList& values_list_in,
const OpInputList& shapes_list_in,
- const OpInputList& dense_list_in) {
+ const OpInputList& dense_list_in,
+ const DataType& internal_type) {
const auto size = indices_list_in.size();
+ // Only perform internal_type check for SparseCrossOp.
+ // Check if the internal_type is not invalid before doing so.
+ bool check_type = internal_type != DT_INVALID;
// Validates indices_list_in OpInputList.
for (int i = 0; i < size; i++) {
+ if (check_type && indices_list_in[i].dtype() != DT_INT64) {
+ return errors::InvalidArgument("Input indices should be of type ",
+ DT_INT64, " but received ",
+ indices_list_in[i].dtype());
+ }
if (!TensorShapeUtils::IsMatrix(indices_list_in[i].shape())) {
return errors::InvalidArgument(
"Input indices should be a matrix but received shape ",
@@ -482,6 +492,14 @@ Status ValidateInput(const OpInputList& indices_list_in,
values_list_in.size());
}
for (int i = 0; i < size; i++) {
+ // Make sure to avoid the expected type to be string, but input values to be
+ // int64.
+ if (check_type && internal_type == DT_STRING &&
+ values_list_in[i].dtype() == DT_INT64) {
+ return errors::InvalidArgument("Input values should be of internal type ",
+ internal_type, " but received ",
+ values_list_in[i].dtype());
+ }
if (!TensorShapeUtils::IsVector(values_list_in[i].shape())) {
return errors::InvalidArgument(
"Input values should be a vector but received shape ",
@@ -502,6 +520,11 @@ Status ValidateInput(const OpInputList& indices_list_in,
shapes_list_in.size());
}
for (int i = 0; i < size; i++) {
+ if (check_type && shapes_list_in[i].dtype() != DT_INT64) {
+ return errors::InvalidArgument("Input shape should be of type ", DT_INT64,
+ " but received ",
+ shapes_list_in[i].dtype());
+ }
if (!TensorShapeUtils::IsVector(shapes_list_in[i].shape())) {
return errors::InvalidArgument(
"Input shapes should be a vector but received shape ",
@@ -517,6 +540,14 @@ Status ValidateInput(const OpInputList& indices_list_in,
// Validates dense_list_in OpInputList
for (int i = 0; i < dense_list_in.size(); ++i) {
+ // Make sure to avoid the expected type to be string, but input values to be
+ // int64.
+ if (check_type && internal_type == DT_STRING &&
+ dense_list_in[i].dtype() == DT_INT64) {
+ return errors::InvalidArgument("Dense inputs should be of internal type ",
+ internal_type, " but received ",
+ dense_list_in[i].dtype());
+ }
if (!TensorShapeUtils::IsMatrix(dense_list_in[i].shape())) {
return errors::InvalidArgument(
"Dense inputs should be a matrix but received shape ",
@@ -698,6 +729,7 @@ class SparseCrossOp : public OpKernel {
int64 signed_hash_key_;
OP_REQUIRES_OK(context, context->GetAttr("hash_key", &signed_hash_key_));
hash_key_ = static_cast<uint64>(signed_hash_key_);
+ OP_REQUIRES_OK(context, context->GetAttr("internal_type", &internal_type_));
}
void Compute(OpKernelContext* context) override {
@@ -711,8 +743,10 @@ class SparseCrossOp : public OpKernel {
OP_REQUIRES_OK(context,
context->input_list("dense_inputs", &dense_list_in));
- OP_REQUIRES_OK(context, ValidateInput(indices_list_in, values_list_in,
- shapes_list_in, dense_list_in));
+ DataType internal_type = internal_type_;
+ OP_REQUIRES_OK(
+ context, ValidateInput(indices_list_in, values_list_in, shapes_list_in,
+ dense_list_in, internal_type));
std::vector<std::unique_ptr<ColumnInterface<InternalType>>> columns =
GenerateColumnsFromInput<InternalType>(indices_list_in, values_list_in,
@@ -756,6 +790,7 @@ class SparseCrossOp : public OpKernel {
private:
int64 num_buckets_;
uint64 hash_key_;
+ DataType internal_type_;
};
class SparseCrossV2Op : public OpKernel {
@@ -773,8 +808,11 @@ class SparseCrossV2Op : public OpKernel {
OP_REQUIRES_OK(context,
context->input_list("dense_inputs", &dense_list_in));
- OP_REQUIRES_OK(context, ValidateInput(indices_list_in, values_list_in,
- shapes_list_in, dense_list_in));
+ // Set internal_type to invalid_type so that the check will be ignored.
+ DataType internal_type = DT_INVALID;
+ OP_REQUIRES_OK(
+ context, ValidateInput(indices_list_in, values_list_in, shapes_list_in,
+ dense_list_in, internal_type));
const Tensor* sep_t;
OP_REQUIRES_OK(context, context->input("sep", &sep_t));
@@ -832,8 +870,11 @@ class SparseCrossHashedOp : public OpKernel {
OP_REQUIRES_OK(context,
context->input_list("dense_inputs", &dense_list_in));
- OP_REQUIRES_OK(context, ValidateInput(indices_list_in, values_list_in,
- shapes_list_in, dense_list_in));
+ // Set internal_type to invalid_type so that the check will be ignored.
+ DataType internal_type = DT_INVALID;
+ OP_REQUIRES_OK(
+ context, ValidateInput(indices_list_in, values_list_in, shapes_list_in,
+ dense_list_in, internal_type));
const Tensor* num_buckets_t;
OP_REQUIRES_OK(context, context->input("num_buckets", &num_buckets_t));