backport CVE-2024-5206

(cherry picked from commit 82ebfe6bffa5567446ce6af9ffe83343cef428ff)
This commit is contained in:
xuchenchen 2024-06-09 09:31:32 +08:00 committed by openeuler-sync-bot
parent 06f3a37618
commit 8bfdeda175
2 changed files with 243 additions and 1 deletions

View File

@ -0,0 +1,235 @@
From 70ca21f106b603b611da73012c9ade7cd8e438b8 Mon Sep 17 00:00:00 2001
From: Olivier Grisel <olivier.grisel@ensta.org>
Date: Mon, 22 Apr 2024 15:10:46 +0200
Subject: [PATCH] FIX remove the computed stop_words_ attribute of text
vectorizer (#28823)
---
doc/whats_new/v1.4.rst | 18 ++++++++
sklearn/feature_extraction/tests/test_text.py | 42 -------------------
sklearn/feature_extraction/text.py | 36 +---------------
3 files changed, 20 insertions(+), 76 deletions(-)
diff --git a/doc/whats_new/v1.4.rst b/doc/whats_new/v1.4.rst
index ad3cc40..321db3b 100644
--- a/doc/whats_new/v1.4.rst
+++ b/doc/whats_new/v1.4.rst
@@ -14,6 +14,24 @@ For a short description of the main highlights of the release, please refer to
.. include:: changelog_legend.inc
+Security
+--------
+
+- |Fix| :class:`feature_extraction.text.CountVectorizer` and
+ :class:`feature_extraction.text.TfidfVectorizer` no longer store discarded
+ tokens from the training set in their `stop_words_` attribute. This attribute
+ would hold too frequent (above `max_df`) but also too rare tokens (below
+ `min_df`). This fixes a potential security issue (data leak) if the discarded
+ rare tokens hold sensitive information from the training set without the
+ model developer's knowledge.
+
+ Note: users of those classes are encouraged to either retrain their pipelines
+ with the new scikit-learn version or to manually clear the `stop_words_`
+ attribute from previously trained instances of those transformers. This
+ attribute was designed only for model inspection purposes and has no impact
+ on the behavior of the transformers.
+ :pr:`28823` by :user:`Olivier Grisel <ogrisel>`.
+
Changed models
--------------
diff --git a/sklearn/feature_extraction/tests/test_text.py b/sklearn/feature_extraction/tests/test_text.py
index 7c7cac8..b784716 100644
--- a/sklearn/feature_extraction/tests/test_text.py
+++ b/sklearn/feature_extraction/tests/test_text.py
@@ -757,21 +757,11 @@ def test_feature_names():
@pytest.mark.parametrize("Vectorizer", (CountVectorizer, TfidfVectorizer))
def test_vectorizer_max_features(Vectorizer):
expected_vocabulary = {"burger", "beer", "salad", "pizza"}
- expected_stop_words = {
- "celeri",
- "tomato",
- "copyright",
- "coke",
- "sparkling",
- "water",
- "the",
- }
# test bounded number of extracted features
vectorizer = Vectorizer(max_df=0.6, max_features=4)
vectorizer.fit(ALL_FOOD_DOCS)
assert set(vectorizer.vocabulary_) == expected_vocabulary
- assert vectorizer.stop_words_ == expected_stop_words
def test_count_vectorizer_max_features():
@@ -806,21 +796,16 @@ def test_vectorizer_max_df():
vect.fit(test_data)
assert "a" in vect.vocabulary_.keys()
assert len(vect.vocabulary_.keys()) == 6
- assert len(vect.stop_words_) == 0
vect.max_df = 0.5 # 0.5 * 3 documents -> max_doc_count == 1.5
vect.fit(test_data)
assert "a" not in vect.vocabulary_.keys() # {ae} ignored
assert len(vect.vocabulary_.keys()) == 4 # {bcdt} remain
- assert "a" in vect.stop_words_
- assert len(vect.stop_words_) == 2
vect.max_df = 1
vect.fit(test_data)
assert "a" not in vect.vocabulary_.keys() # {ae} ignored
assert len(vect.vocabulary_.keys()) == 4 # {bcdt} remain
- assert "a" in vect.stop_words_
- assert len(vect.stop_words_) == 2
def test_vectorizer_min_df():
@@ -829,21 +814,16 @@ def test_vectorizer_min_df():
vect.fit(test_data)
assert "a" in vect.vocabulary_.keys()
assert len(vect.vocabulary_.keys()) == 6
- assert len(vect.stop_words_) == 0
vect.min_df = 2
vect.fit(test_data)
assert "c" not in vect.vocabulary_.keys() # {bcdt} ignored
assert len(vect.vocabulary_.keys()) == 2 # {ae} remain
- assert "c" in vect.stop_words_
- assert len(vect.stop_words_) == 4
vect.min_df = 0.8 # 0.8 * 3 documents -> min_doc_count == 2.4
vect.fit(test_data)
assert "c" not in vect.vocabulary_.keys() # {bcdet} ignored
assert len(vect.vocabulary_.keys()) == 1 # {a} remains
- assert "c" in vect.stop_words_
- assert len(vect.stop_words_) == 5
def test_count_binary_occurrences():
@@ -1156,28 +1136,6 @@ def test_countvectorizer_vocab_dicts_when_pickling():
)
-def test_stop_words_removal():
- # Ensure that deleting the stop_words_ attribute doesn't affect transform
-
- fitted_vectorizers = (
- TfidfVectorizer().fit(JUNK_FOOD_DOCS),
- CountVectorizer(preprocessor=strip_tags).fit(JUNK_FOOD_DOCS),
- CountVectorizer(strip_accents=strip_eacute).fit(JUNK_FOOD_DOCS),
- )
-
- for vect in fitted_vectorizers:
- vect_transform = vect.transform(JUNK_FOOD_DOCS).toarray()
-
- vect.stop_words_ = None
- stop_None_transform = vect.transform(JUNK_FOOD_DOCS).toarray()
-
- delattr(vect, "stop_words_")
- stop_del_transform = vect.transform(JUNK_FOOD_DOCS).toarray()
-
- assert_array_equal(stop_None_transform, vect_transform)
- assert_array_equal(stop_del_transform, vect_transform)
-
-
def test_pickling_transformer():
X = CountVectorizer().fit_transform(JUNK_FOOD_DOCS)
orig = TfidfTransformer().fit(X)
diff --git a/sklearn/feature_extraction/text.py b/sklearn/feature_extraction/text.py
index 29104c2..e9727ae 100644
--- a/sklearn/feature_extraction/text.py
+++ b/sklearn/feature_extraction/text.py
@@ -1081,15 +1081,6 @@ class CountVectorizer(_VectorizerMixin, BaseEstimator):
True if a fixed vocabulary of term to indices mapping
is provided by the user.
- stop_words_ : set
- Terms that were ignored because they either:
-
- - occurred in too many documents (`max_df`)
- - occurred in too few documents (`min_df`)
- - were cut off by feature selection (`max_features`).
-
- This is only available if no vocabulary was given.
-
See Also
--------
HashingVectorizer : Convert a collection of text documents to a
@@ -1098,12 +1089,6 @@ class CountVectorizer(_VectorizerMixin, BaseEstimator):
TfidfVectorizer : Convert a collection of raw documents to a matrix
of TF-IDF features.
- Notes
- -----
- The ``stop_words_`` attribute can get large and increase the model size
- when pickling. This attribute is provided only for introspection and can
- be safely removed using delattr or set to None before pickling.
-
Examples
--------
>>> from sklearn.feature_extraction.text import CountVectorizer
@@ -1242,19 +1227,17 @@ class CountVectorizer(_VectorizerMixin, BaseEstimator):
mask = new_mask
new_indices = np.cumsum(mask) - 1 # maps old indices to new
- removed_terms = set()
for term, old_index in list(vocabulary.items()):
if mask[old_index]:
vocabulary[term] = new_indices[old_index]
else:
del vocabulary[term]
- removed_terms.add(term)
kept_indices = np.where(mask)[0]
if len(kept_indices) == 0:
raise ValueError(
"After pruning, no terms remain. Try a lower min_df or a higher max_df."
)
- return X[:, kept_indices], removed_terms
+ return X[:, kept_indices]
def _count_vocab(self, raw_documents, fixed_vocab):
"""Create sparse feature matrix, and vocabulary where fixed_vocab=False"""
@@ -1399,7 +1382,7 @@ class CountVectorizer(_VectorizerMixin, BaseEstimator):
raise ValueError("max_df corresponds to < documents than min_df")
if max_features is not None:
X = self._sort_features(X, vocabulary)
- X, self.stop_words_ = self._limit_features(
+ X = self._limit_features(
X, vocabulary, max_doc_count, min_doc_count, max_features
)
if max_features is None:
@@ -1932,15 +1915,6 @@ class TfidfVectorizer(CountVectorizer):
The inverse document frequency (IDF) vector; only defined
if ``use_idf`` is True.
- stop_words_ : set
- Terms that were ignored because they either:
-
- - occurred in too many documents (`max_df`)
- - occurred in too few documents (`min_df`)
- - were cut off by feature selection (`max_features`).
-
- This is only available if no vocabulary was given.
-
See Also
--------
CountVectorizer : Transforms text into a sparse matrix of n-gram counts.
@@ -1948,12 +1922,6 @@ class TfidfVectorizer(CountVectorizer):
TfidfTransformer : Performs the TF-IDF transformation from a provided
matrix of counts.
- Notes
- -----
- The ``stop_words_`` attribute can get large and increase the model size
- when pickling. This attribute is provided only for introspection and can
- be safely removed using delattr or set to None before pickling.
-
Examples
--------
>>> from sklearn.feature_extraction.text import TfidfVectorizer
--
2.27.0

View File

@ -3,10 +3,11 @@
Name: python-scikit-learn
Summary: A Python module for machine learning built on top of SciPy
Version: 1.4.0
Release: 1
Release: 2
License: BSD
URL: https://scikit-learn.org/stable/
Source0: https://files.pythonhosted.org/packages/source/s/scikit-learn/scikit-learn-%{version}.tar.gz
Patch3000: backport-CVE-2024-5206.patch
%global _description\
scikit-learn is a Python module for machine learning built on top of SciPy\
@ -43,6 +44,12 @@ CFLAGS="$RPM_OPT_FLAGS -s"
%{python3_sitearch}/scikit_learn-%{version}.dist-info/
%changelog
* Fri Jun 07 2024 xuchenchen <xuchenchen@kylinos.cn> - 1.4.0-2
- Type:CVES
- ID:CVE-2024-5206
- SUG:NA
- DESC:fix CVE-2024-5206
* Fri Mar 08 2024 jiangxinyu <jiangxinyu@kylinos.cn> - 1.4.0-1
- Update package to version 1.4.0