179 lines
5.7 KiB
Diff
179 lines
5.7 KiB
Diff
|
|
diff -urpN a/gcc/testsuite/gfortran.dg/graphite/pr90240.f b/gcc/testsuite/gfortran.dg/graphite/pr90240.f
|
||
|
|
new file mode 100644
|
||
|
|
--- /dev/null
|
||
|
|
+++ b/gcc/testsuite/gfortran.dg/graphite/pr90240.f
|
||
|
|
@@ -0,0 +1,18 @@
|
||
|
|
+! { dg-do compile }
|
||
|
|
+! { dg-options "-O1 -floop-nest-optimize" }
|
||
|
|
+
|
||
|
|
+ PARAMETER (n=1335, N2=1335)
|
||
|
|
+ COMMON a(n,N2), b(n,N2), c(n,N2),
|
||
|
|
+ * d(n,N2),
|
||
|
|
+ 2 e(n,N2), f(n,N2),
|
||
|
|
+ * g(n,N2), h(n,N2)
|
||
|
|
+ DO 200 j=1,i
|
||
|
|
+ DO 300 k=1,l
|
||
|
|
+ a(k,j) = c(k,j)*g(k,j)*f(k+1,m)+f(k,m)+f(k,j)
|
||
|
|
+ 2 +f(k+1,j)*h(k+1,j)
|
||
|
|
+ b(k,j+1) = d(k,j+1)*g(k,m)+g(k,j+1)
|
||
|
|
+ 1 *e(k,m)+e(k,j+1)+e(k,j)+e(k+1,j)
|
||
|
|
+ 2 *h(k,j+1)-h(k,j)
|
||
|
|
+ 300 ENDDO
|
||
|
|
+ 200 ENDDO
|
||
|
|
+ END
|
||
|
|
diff -urpN a/gcc/tree-ssa-loop-ivopts.c b/gcc/tree-ssa-loop-ivopts.c
|
||
|
|
--- a/gcc/tree-ssa-loop-ivopts.c
|
||
|
|
+++ b/gcc/tree-ssa-loop-ivopts.c
|
||
|
|
@@ -4557,22 +4557,25 @@ get_address_cost (struct ivopts_data *data, struct iv_use *use,
|
||
|
|
static comp_cost
|
||
|
|
get_scaled_computation_cost_at (ivopts_data *data, gimple *at, comp_cost cost)
|
||
|
|
{
|
||
|
|
- int loop_freq = data->current_loop->header->count.to_frequency (cfun);
|
||
|
|
- int bb_freq = gimple_bb (at)->count.to_frequency (cfun);
|
||
|
|
- if (loop_freq != 0)
|
||
|
|
- {
|
||
|
|
- gcc_assert (cost.scratch <= cost.cost);
|
||
|
|
- int scaled_cost
|
||
|
|
- = cost.scratch + (cost.cost - cost.scratch) * bb_freq / loop_freq;
|
||
|
|
+ if (data->speed
|
||
|
|
+ && data->current_loop->header->count.to_frequency (cfun) > 0)
|
||
|
|
+ {
|
||
|
|
+ basic_block bb = gimple_bb (at);
|
||
|
|
+ gcc_assert (cost.scratch <= cost.cost);
|
||
|
|
+ int scale_factor = (int)(intptr_t) bb->aux;
|
||
|
|
+ if (scale_factor == 1)
|
||
|
|
+ return cost;
|
||
|
|
|
||
|
|
- if (dump_file && (dump_flags & TDF_DETAILS))
|
||
|
|
- fprintf (dump_file, "Scaling cost based on bb prob "
|
||
|
|
- "by %2.2f: %d (scratch: %d) -> %d (%d/%d)\n",
|
||
|
|
- 1.0f * bb_freq / loop_freq, cost.cost,
|
||
|
|
- cost.scratch, scaled_cost, bb_freq, loop_freq);
|
||
|
|
+ int scaled_cost
|
||
|
|
+ = cost.scratch + (cost.cost - cost.scratch) * scale_factor;
|
||
|
|
|
||
|
|
- cost.cost = scaled_cost;
|
||
|
|
- }
|
||
|
|
+ if (dump_file && (dump_flags & TDF_DETAILS))
|
||
|
|
+ fprintf (dump_file, "Scaling cost based on bb prob "
|
||
|
|
+ "by %2.2f: %d (scratch: %d) -> %d\n",
|
||
|
|
+ 1.0f * scale_factor, cost.cost, cost.scratch, scaled_cost);
|
||
|
|
+
|
||
|
|
+ cost.cost = scaled_cost;
|
||
|
|
+ }
|
||
|
|
|
||
|
|
return cost;
|
||
|
|
}
|
||
|
|
@@ -6678,9 +6681,8 @@ try_improve_iv_set (struct ivopts_data *data,
|
||
|
|
}
|
||
|
|
|
||
|
|
iv_ca_delta_commit (data, ivs, best_delta, true);
|
||
|
|
- gcc_assert (best_cost == iv_ca_cost (ivs));
|
||
|
|
iv_ca_delta_free (&best_delta);
|
||
|
|
- return true;
|
||
|
|
+ return best_cost == iv_ca_cost (ivs);
|
||
|
|
}
|
||
|
|
|
||
|
|
/* Attempts to find the optimal set of induction variables. We do simple
|
||
|
|
@@ -6717,6 +6719,14 @@ find_optimal_iv_set_1 (struct ivopts_data *data, bool originalp)
|
||
|
|
}
|
||
|
|
}
|
||
|
|
|
||
|
|
+ /* If the set has infinite_cost, it can't be optimal. */
|
||
|
|
+ if (iv_ca_cost (set).infinite_cost_p ())
|
||
|
|
+ {
|
||
|
|
+ if (dump_file && (dump_flags & TDF_DETAILS))
|
||
|
|
+ fprintf (dump_file,
|
||
|
|
+ "Overflow to infinite cost in try_improve_iv_set.\n");
|
||
|
|
+ iv_ca_free (&set);
|
||
|
|
+ }
|
||
|
|
return set;
|
||
|
|
}
|
||
|
|
|
||
|
|
@@ -7522,6 +7532,49 @@ loop_body_includes_call (basic_block *body, unsigned num_nodes)
|
||
|
|
return false;
|
||
|
|
}
|
||
|
|
|
||
|
|
+/* Determine cost scaling factor for basic blocks in loop. */
|
||
|
|
+#define COST_SCALING_FACTOR_BOUND (20)
|
||
|
|
+
|
||
|
|
+static void
|
||
|
|
+determine_scaling_factor (struct ivopts_data *data, basic_block *body)
|
||
|
|
+{
|
||
|
|
+ int lfreq = data->current_loop->header->count.to_frequency (cfun);
|
||
|
|
+ if (!data->speed || lfreq <= 0)
|
||
|
|
+ return;
|
||
|
|
+
|
||
|
|
+ int max_freq = lfreq;
|
||
|
|
+ for (unsigned i = 0; i < data->current_loop->num_nodes; i++)
|
||
|
|
+ {
|
||
|
|
+ body[i]->aux = (void *)(intptr_t) 1;
|
||
|
|
+ if (max_freq < body[i]->count.to_frequency (cfun))
|
||
|
|
+ max_freq = body[i]->count.to_frequency (cfun);
|
||
|
|
+ }
|
||
|
|
+ if (max_freq > lfreq)
|
||
|
|
+ {
|
||
|
|
+ int divisor, factor;
|
||
|
|
+ /* Check if scaling factor itself needs to be scaled by the bound. This
|
||
|
|
+ is to avoid overflow when scaling cost according to profile info. */
|
||
|
|
+ if (max_freq / lfreq > COST_SCALING_FACTOR_BOUND)
|
||
|
|
+ {
|
||
|
|
+ divisor = max_freq;
|
||
|
|
+ factor = COST_SCALING_FACTOR_BOUND;
|
||
|
|
+ }
|
||
|
|
+ else
|
||
|
|
+ {
|
||
|
|
+ divisor = lfreq;
|
||
|
|
+ factor = 1;
|
||
|
|
+ }
|
||
|
|
+ for (unsigned i = 0; i < data->current_loop->num_nodes; i++)
|
||
|
|
+ {
|
||
|
|
+ int bfreq = body[i]->count.to_frequency (cfun);
|
||
|
|
+ if (bfreq <= lfreq)
|
||
|
|
+ continue;
|
||
|
|
+
|
||
|
|
+ body[i]->aux = (void*)(intptr_t) (factor * bfreq / divisor);
|
||
|
|
+ }
|
||
|
|
+ }
|
||
|
|
+}
|
||
|
|
+
|
||
|
|
/* Optimizes the LOOP. Returns true if anything changed. */
|
||
|
|
|
||
|
|
static bool
|
||
|
|
@@ -7560,7 +7613,6 @@ tree_ssa_iv_optimize_loop (struct ivopts_data *data, struct loop *loop,
|
||
|
|
body = get_loop_body (loop);
|
||
|
|
data->body_includes_call = loop_body_includes_call (body, loop->num_nodes);
|
||
|
|
renumber_gimple_stmt_uids_in_blocks (body, loop->num_nodes);
|
||
|
|
- free (body);
|
||
|
|
|
||
|
|
data->loop_single_exit_p = exit != NULL && loop_only_exit_p (loop, exit);
|
||
|
|
|
||
|
|
@@ -7574,6 +7626,9 @@ tree_ssa_iv_optimize_loop (struct ivopts_data *data, struct loop *loop,
|
||
|
|
if (data->vgroups.length () > MAX_CONSIDERED_GROUPS)
|
||
|
|
goto finish;
|
||
|
|
|
||
|
|
+ /* Determine cost scaling factor for basic blocks in loop. */
|
||
|
|
+ determine_scaling_factor (data, body);
|
||
|
|
+
|
||
|
|
/* Finds candidates for the induction variables (item 2). */
|
||
|
|
find_iv_candidates (data);
|
||
|
|
|
||
|
|
@@ -7584,6 +7639,9 @@ tree_ssa_iv_optimize_loop (struct ivopts_data *data, struct loop *loop,
|
||
|
|
|
||
|
|
/* Find the optimal set of induction variables (item 3, part 2). */
|
||
|
|
iv_ca = find_optimal_iv_set (data);
|
||
|
|
+ /* Cleanup basic block aux field. */
|
||
|
|
+ for (unsigned i = 0; i < data->current_loop->num_nodes; i++)
|
||
|
|
+ body[i]->aux = NULL;
|
||
|
|
if (!iv_ca)
|
||
|
|
goto finish;
|
||
|
|
changed = true;
|
||
|
|
@@ -7599,6 +7657,7 @@ tree_ssa_iv_optimize_loop (struct ivopts_data *data, struct loop *loop,
|
||
|
|
remove_unused_ivs (data, toremove);
|
||
|
|
|
||
|
|
finish:
|
||
|
|
+ free (body);
|
||
|
|
free_loop_data (data);
|
||
|
|
|
||
|
|
return changed;
|